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Abstract. Memory networks model information and knowledge as mem-
ories that can be manipulated for prediction and reasoning about ques-
tions of interest. In many cases, there exists complicated relational struc-
ture in the data, by which the memories can be linked together into
graphs to propagate information. Typical examples include tree struc-
ture of a sentence and knowledge graph in a dialogue system. In this
paper, we present a novel graph enhanced memory network GEMN to
integrate relational information between memories for prediction and rea-
soning. Our approach introduces graph attentions to model the relations,
and couples them with content-based attentions via an additional neural
network layer. It thus can better identify and manipulate the memories
related to a given question, and provides more accurate prediction about
the final response. We demonstrate the effectiveness of the proposed ap-
proach with aspect based sentiment classification. The empirical analysis
on real data shows the advantages of incorporating relational dependen-
cies into the memory networks.

1 Introduction

Memory network [45, 39, 12, 23] has recently attracted increasing attention due
to its success in many applications, such as machine reading and understanding,
visual and textual question answering [2, 46, 15, 47, 42, 13]. In general, a memory
network embeds a set of facts and knowledge in vector spaces as memory cells
(shorten as memories). Given a question (typically represented with natural
language), the model searches the supporting memories, and infers the final
answer via manipulating the retrieved memories based on attention mechanism
[1, 26]. The major advantage of memory networks is that they introduce an
external memory component and the associated computational modules in the
neural network framework to explicitly store, update, access, and manipulate the
knowledge and facts for prediction, inference and reasoning given the questions.
The reader and writer functions of memory networks are fully differentiable such
that the entire architecture can be learned end-to-end with backpropagation.



Most of the recent works on memory networks mainly focus on the contents
of the facts and knowledge. However the relations between them are not taken
into account. In many cases, the facts and knowledge are not independent of
each other, but are linked into a relational structure. The information exists not
only in the content of the facts, but also in the relations between them. The
importance of relational information has been demonstrated in the literature,
see e.g., probabilistic models [7, 10, 29] and neural network models [3, 6, 21, 37].

In this paper, we propose a novel graph enhanced memory network (GEMN)
to integrate the relational information into (deep) memory networks. GEMN al-
lows for information propagation between memories and can thus better identify
and manipulate the related memories to predict or reason the final response to a
question. In particular, we link memories into a graph with their relations, and
introduce an extra attention, graph attention, which is a weight vector, to cap-
ture the relational information. We model the graph attention with a Gaussian
random field, i.e., a Gaussian distribution having graph Laplacian as kernels [48,
49, 35]. The memories with a short distance on the graph show strong correla-
tion and thus likely have similar importance (i.e. weights). The graph attentions
are then combined with the content-based attentions with an additional neural
network layer. This introduces extra flexibility to automatically learn the combi-
nation of the two types of information (content and relations) from the data. The
GEMN approach can effectively identify and leverage the important memories
for a given question, and thus leads to a better inference and reasoning about
the final response. There are few works investigating relational information in
memory networks. An recent literature on structured attentions [19] is most rel-
evant to our work. It models probabilistic dependencies with conditional random
field that mainly focuses on sequence structures, rather than relations in gen-
eral. In contrast, our approach incorporates relational information into memory
networks and can model both content and relations of memories in an elegant
and flexible way. The relational structure modeled in our approach can be any
form, such as sequences, trees or graphs. The proposed graph attentions, com-
bined with the content-based attentions, improves the inference and reasoning
of memory networks.

We apply the proposed GEMN method to aspect level sentiment classifica-
tion. With the exponential growth of user-generated content on online social
network services, extracting useful insights such as preferences and opinions of
users is of growing interest. Sentiment analysis [25, 31, 5, 36] focuses on detect-
ing opinions and emotions of users on products, services and social events from
large collections of texts. Typically the sentiment analysis is to estimate the
positive or negative polarity of a given sentence. A more important and com-
plicated task is to extract the sentiment polarity towards aspects [34, 25, 31, 33].
For example, in a customer review on a laptop, “price is ok, but resolution is
low!”, there are positive emotion on the aspect “price”, and negative emotion on
the aspect “resolution”. Simply classifying the sentence as positive or negative
may not properly elicit user’s opinions, thus a fine-grained analysis on aspect
level sentiment is necessary. We consider a supervised case where the aspects are



given. There are different approaches explored in the literature, such as SVM [22,
44, 4], conditional random field [14, 43], and neural networks [8, 41, 42, 30]. Our
approach exploits graph- and content-attentions to position the related words
(i.e. memories) in a sentence w.r.t. a given aspect (i.e. question of interest), and
estimates the aspect level sentiment polarity based on the discovered relevant
words. The empirical analysis on the real data about customer reviews on laptops
and restaurants [33] demonstrates the superiority of the proposed approach.

We start the rest of this paper with a brief review on memory networks,
and then introduce the graph enhanced memory network with the application
to aspect based sentiment classification in the section 3. Before conclusion, the
empirical analysis of the GEMN approach is presented in the section 4.

2 Memory Networks

Memory Networks [45, 39, 12, 23] are a class of learning methods with a memory
component that can be read and written for prediction, inference and reasoning.
The memory networks typically consist of memories and four computational
modules, including I (input), G (generalization), O (output), and R (response)
[45]. They are defined as follows:

• Memories are an array of vectorized objects or facts;
• Input module computes the feature representation of the input information;
• Generalization module updates the old memory with the new input;
• Output module produces an output vector given the question of interest and

the current memories;
• Response module generates the final response (such as a textual answer to

a question) conditioned on the output.

In general, the input and the generalization modules map the facts and the
question q (e.g. a question sentence for a question-answering system) into a
feature space, and get the vector representation mi’s and u for the facts and
the question, respectively. The output module manipulates the memories mi’s
and the question vector u to generate a single output o for computing the final
response. In the recent literature, the output module is typically based on the
attention mechanism [1, 26]. In particular, the output can be computed as (see
e.g. [39]):

pi = softmax(f(mi,u)), o =
∑

i
pici, (1)

Intuitively pi specifies how important the memory mi is w.r.t. the question u,
and is scaled with the softmax function, i.e. softmax(xi) = exp(xi)/

∑
j exp(xj)

to ensure the constraints
∑
i pi = 1, pi ∈ [0, 1]. The weight function f(mi,u)

quantifies the relevance or similarity between mi and u. There are different
definitions on the weight function. The typical choices include:

f(mi,u) =


uTmi dot

uTAmi general

vT tanh(A[u;mi]) concatenation,

(2)



where the matrix A and the vector v are parameters to be learned with back-
propagation [26]. The output o is a weighted sum of ci. ci is known as output
memory, i.e. the vector representation of the fact i in the output feature space.
In many cases, one can use the same embedding function and get ci ≡ mi

[39]. Given the output o, the final answer to the question u is modeled as a
classification problem. The probability of the label is predicted with softmax

p(s) = softmax(g(o,u)), (3)

where the function g can be similarly defined as (2).

3 Graph Enhanced Memory Networks

Memory networks provide a sophisticated neural network architecture to jointly
model the facts for answering the questions of interest in an end-to-end fashion.
However most existing methods in the literature mainly consider the content of
the facts without the relations between them (such as the sentence tree structures
and the knowledge graphs). In this paper, we propose a graph enhanced mem-
ory network (GEMN), which introduces additional graph attentions to model
the relational information for better positioning and manipulating the relevant
memories w.r.t. the given questions.

Attentions can be viewed as an additional hidden layer in a neural network
framework to estimate a categorical distribution (p1, . . . , pN ) for soft selection
over the number N of memories. It is obvious that integrating the relational
information into the learning process can lead to a more accurate attention
distribution. Inspired by [48, 49, 35], we introduce an auxiliary random variable
zi to each memory. The value of zi specifies graph attention weight, i.e., to what
extent the memory i contributes to the output o based on its relations to other
memories. zi’s are not independent of each other, but are interconnected into a
weighted graph G = (Z,E,W ), where zi ∈ Z (one for each memory) is the vertex
of the graph, and e ∈ E is the edges between zi’s. The graph G is represented as
an adjacency matrix W of size N×N , where N denotes the number of memories.
Each entry Wi,j represents the weight of an edge ei,j between the memories i
and j. Intuitively, the larger the weight, the stronger the correlation between
the two memories, and thus the more likely the memories are assigned similar
graph attentions for the output. We formulate the weight as a function of the
distance di,j between i and j on the graph G. The function can be of any form,
but non-negative and monotonically decreasing. It can be defined as, e.g.,:

Squared exponential: exp(−d2/2`2) (4)

Rational quadratic: (1 + d2/2α`2)−α (5)

γ-exponential: exp(−(d/`)γ), 0 < γ ≤ 2 (6)

With the adjacency matrix, we now model the distribution of zi’s for a soft
selection over memories. The distribution is modeled as Gaussian random field



[50, 49, 48]. In particular, the state of zi is only conditioned on the connected
random variables, and follows a Gaussian distribution. The energy, i.e. sum of
clique potentials of the Gaussian random field, is thus defined as [49]:

E(z) =
1

4

∑
i,j

Wi,j(zi − zj)2. (7)

Therefore, the distribution of zi’s is

p(z) ∝ exp (−E(z)) ,

= exp

(
−1

2
zT∆z

)
, (8)

which is a Gaussian with mean zero and convariance ∆−1. ∆ denotes combi-
natorial graph Laplacian: ∆ = D − W , where D is a diagonal degree matrix
with Di,i =

∑
jWi,j . Putting everything together, we now have the graph based

output og:

og =
∑

i
zimi, z ∼ N (0, ∆−1). (9)

The content based output oc is computed as usual, see (1). To learn from both
content and relational information, we mix the two types of outputs with differ-
ent ways, e.g.:

o = h(oc,og) =


oc + og addition

oc ⊗ og multiplication

B[oc;og] concatenation

(10)

Here multiplication is defined as:

oc ⊗ og =
∑

i
aimi, ai = softmax(zi · f(mi,u)) (11)

The parameter matrix B in concatenation makes a linear transformation from
the concatenation space to the memory space, and will be learned from the
data with backpropagation. Addition is actually a special case of concatenation
(i.e. a special weight matrix B). Compared with addition, concatenation can
provide more flexibility in learning complex combination of content and graph
information from the data (e.g. different weights on dimensions).

We also extend our model to a multiple level version. The structure of the
deep network is stacked as follows:

u(t) = Au(t−1) + o(t−1), p
(t)
i = softmax(f(mi,u

(t))), (12)

o(t)
c =

∑
i
p
(t)
i mi, o(t) = h(o(t)

c ,og), (13)

where the stacking strategy of memory embeddings {m1, . . . ,mN} is RNN-like,
i.e., keeping the memories the same across layers [39]. At the top of the network,
the final response is computed with softmax: p(s) = softmax(g(o(t),u(t))).



Fig. 1: Graph enhanced memory network for aspect-based sentiment classifica-
tion: a single layer version (top) and a multiple layers version (bottom).

3.1 The GEMN for Sentiment Analysis

We now illustrate the graph enhanced memory network with aspect based senti-
ment classification. The network structure is shown as Fig. 1. Assume that there
is a sentence consisting of a sequence of words {w1, . . . , wN} and multiple aspects
{a1, . . . , aM}. For instance, let consider a guest comment on a restaurant, “food
is ok, but service is bad”, with two aspect words “food” and “service”. The task
is to detect aspect level sentiment (i.e., positive emotion on “food” and negative
emotion on “service”) by exploiting the semantic meanings of words and the tree
structure of the sentence. Here we assume each aspect only involves a single word
in the sentence (e.g., “food” and “service”). In the case of multi-word aspects,
the computation will be similar.

Let start with the single level version of our model, shown as the top panel
of Fig. 1. In the memory network framework, the words {w1, . . . , wN} of the
sentence are the facts, and the aspect word (e.g. “food”) is formulated as the
question q. The final response is the aspect level polarity (positive, negative or
neutral) of the sentence. For the input module, we use word embedding [28, 32,
24] and long short-term memory (LSTM) [16, 9, 11, 40], i.e., the LSTM with pre-
trained word vectors as the freezed embedding matrix. The output vector of the
LSTM cell, one for each word wi, is the memory mi. The question q (aspect word)
is mapped as a vector u with word embedding. For the output module, the output



Table 1: Statistics of the datasets
Dataset Positive Negative Neutral

Laptop Train 987 866 460
Laptop Test 341 128 169
Restaurant Train 2164 805 633
Restaurant Test 728 196 196

vector o consists of two components: content-based oc and graph-based og. They
are computed with (1) and (9), and mixed with (10). Here the activation function
for computing pi can be flexible, e.g., we can replace the softmax with the tanh
function, which is theoretically more reasonable (refer to categorical distributions
of multi-label classification problem). The graph attention weights zi’s follow a
Gaussian distribution (8). Since the aspect word is given, we can compute the
maximum likelihood estimations (i.e. mean of the Gaussian conditioned on the
aspect word) as the values of zi’s. To characterize the properties of zi’s explicitly
in terms of matrix operations, the distribution (8) is expanded as:[

za
zm

]
∼ N

(
0,

[
Da,a −Wa,a −Wa,m

−Wm,a Dm,m −Wm,m

]−1
)

(14)

where za denotes the graph attention weight of the aspect word, which is known
as za ≡ 1, since the word is directly related to the aspect. The vector zm denotes
the unknown graph attention weights of the other words in the sentence. The
Laplacian ∆ is split into four corresponding blocks for the aspect word and the
other words. Then the maximum likelihood estimation of zm conditioned on the
attention weight za is:

zm = (Dm,m −Wm,m)
−1
Wm,aza. (15)

Finally the response module computes the final response with the softmax (3)
to predict the probability of the aspect level sentiment polarity. We also model
the sentiment classification problem with a multiple level version of the GEMN.
The network structure is shown as the bottom panel of Fig. 1.

4 Experiments

To evaluate the performance of the graph enhanced memory network, we apply
the approach to address the aspect-based sentiment classification problem. The
experimental analysis is performed on real data with comparison against the
state-of-the-art methods.

4.1 Datasets

The data is from the Task 4.2 of SemEval2014 [33], which includes two domain-
specific English datasets for laptop and restaurant customer reviews. Each dataset



Table 2: Classification accuracy of different methods
Baselines Laptops Restaurants GEMN Laptops Restaurants

Majority 53.45 65.00 Semantic Attention 70.69 78.84
Feature+SVM 72.10 80.89 Graph Attention 73.51 80.36
LSTM 66.45 74.28 Graph + Semantic (1 hop) 73.82 80.00
TDLSTM 68.13 75.63 Graph + Semantic (2 hops) 74.29 80.71
TDLSTM+ATT 66.24 74.31 Graph + Semantic (3 hops) 73.20 80.18
MemNet(1) 67.66 76.10 Graph + Semantic (4 hops) 72.88 80.54
MemNet(3) 71.74 79.06 Graph + Semantic (5 hops) 72.72 80.80
MemNet(5) 71.89 80.14 Graph + Semantic (6 hops) 72.41 81.43
MemNet(7) 72.37 80.32 Graph + Semantic (7 hops) 72.72 80.09
MemNet(9) 72.21 80.95 Graph + Semantic (8 hops) 72.26 80.62

has been manually labeled with annotations at the sentence level. The statistics
of the datasets are summarized in Table 1. We follow the settings as in [42] that
removes the sentences with the label conflict due to the small size of the cat-
egory. The goal of the experiment is to predict the aspect level polarity (three
polarities: positive, negative and neutral) of a sentence given the labeled aspect
terms. Note that one sentence can include multiple aspects. For example, given
the sentence “Great food but the service was dreadful!” and the aspect terms
{“food” and “service”}, successful predictions would be {“food”: positive and
“service”: negative}.

4.2 Baselines

The proposed method is compared with multiple recent baselines to demonstrate
its performance on aspect based sentiment prediction. The baselines include:

• Majority : assigns to each sentence in the test set the majority sentiment
label in the training set.
• SVM [22]: is ranked at the 1st (Laptops) and 2nd (Restaurants) places in

the SemEval2014 contest. The features used in the method are sophisticated
hand-crafted, including n-gram, lexicon and parse features.
• Three LSTM based models [41]: the LSTM directly uses the output vector

of the LSTM cell for the last word of a sentence as input of a softmax
to estimate the sentiment polarity. The TDLSTM extends the LSTM to
consider the content similarity with the aspect words. The TDLSTM+ATT
further extends the TDLSTM with the attention mechanism.

• MemNet [42]: uses several layers of attentions over the word embeddings.
MemNet(t) denotes that the model uses t layers of attentions.

4.3 Quantitative Analysis

We first perform quantitative analysis of the proposed method. In the experi-
ments, the GEMN is used to predict aspect level sentiment polarity (positive,



Table 3: Classification accuracy of the GEMN approach with the constituency
and the dependency tree structures of the sentences

Laptops Restaurants
Constituency Dependency Constituency Dependency

Semantic Attention 70.69 73.04 78.84 78.67
Graph Attention 73.51 73.51 80.36 79.20
Graph + Semantic (1 hops) 73.82 73.51 80.00 80.09
Graph + Semantic (2 hops) 74.29 74.76 80.71 80.18
Graph + Semantic (5 hops) 72.72 74.45 80.80 81.07
Graph + Semantic (10 hops) 71.16 75.39 80.54 80.08

negative and neutral) for each test sentence. The performance is measured with
classification accuracy.

The graph structure of a sentence, used in the proposed approach, is extracted
with Stanford’s CoreNLP Toolkit [27]. Here we use the constituency tree of a
sentence. The adjacency matrix is computed using squared exponential kernel
with ` = 0.1. The distance di,j between two words is defined as the number of
edges of the shortest path connecting them. The distance is normalized by the
diameter of the sentence tree. The questions (i.e. the aspects) and the words are
mapped as 300-dimensional Glove vectors [32], and the weights of the embedding
matrix are freezed during training. The LSTM is then used to map each word in
a sentence into a 128-dimensional memory space. We use an aggressive dropout
of 0.7 before the final softmax layer to prevent the model from overfitting [38].
Dropout of 0.5 and 0.3 are respectively used at the input nodes and the recurrent
connections of the LSTM cells. The optimization is done with Adam method [20].
The learning rate is set to 0.005. The model learns during 10 epochs with a batch
size of 32 training sentences.

To get detailed performance of the proposed approach, we consider different
ways to compute the output vectors for the final softmax layer:

• Variant 1: only models content based output, o ≡ oc. In this case we do not
use any information extracted from the graph structure of the sentence.

• Variant 2: only models graph based output, o ≡ og. Here the content based
information (i.e. the semantic meanings of the words) is ignored.

• Variant 3: combines both outputs with multiplication, o = oc ⊗ og.
• Variant 4: models the stacked and combined outputs o(t) with (12) (t hops).

The experimental results are summarized in Table 2. For a fair comparison,
we directly use the results of the baselines reported in [42]. Our approach, which
models both graph and content attentions and refines over multiple layers, out-
performs the baselines. It is interesting to note that our approach with only the
graph attentions performs rather well. It reveals that the relational structures
are pretty informative in predicting the relevant memories in the given context.
The semantic information of the words, which may not be fully contained in
the parse trees, can further improve the predictions. Therefore, combining both



Fig. 2: Example sentence with a single aspect food : the constituency tree of the
sentence (top) and the learned attention weights (bottom).

graph and semantic attentions leads to a notable gain in prediction accuracy.
Stacking several layers to get a deep network performs well, e.g., a 0.47% increase
in accuracy on the Laptops dataset. In summary, the empirical results demon-
strate that, as the relational information reveals additional correlations among
memories, the proposed graph attentions help the memory model to focus on
the important memories w.r.t. the given aspects, and thus the GEMN achieves
better predictions.

We also investigate the influence of the different graph structures of the
sentences on the performance of the proposed method. Here we consider two
types of tree structures: constituency and dependency. Dependency tree models
one-to-one correspondence, and focuses on word grammars, while constituency
tree models one-to-one-or-more correspondence, and focuses on phrase structure
grammars. The dependency trees are smaller than the constituency ones. The
differences between the two types of trees are investigated in details in [18]. Here
we do not use the chain structure of the sentences (i.e. distance between the in-
dices of the words), as the chain may meet difficulties in modeling some scenarios,
e.g. “service is bad, but food of the restaurant is good”. The word “food” should
be related to “good”, rather than “bad”, although the index distance is larger.
The tree structures of the sentences can better encode such complicated cases. In
the experiments, we parse the sentences with Stanford’s CoreNLP Toolkit [27]
to get the constituency trees, and with the spaCy Toolkit [17] to get the depen-
dency ones. As summarized in Table 3, the GEMN approach with the different
tree structures of the sentences achieves similar performance. One can find that
both types of tree structures can be well integrated with graph attentions, and
provide improvement of classification accuracy. The experimental results further
demonstrate the advantages of the proposed approach.



Fig. 3: Example sentence with two aspects: the constituency tree of the sentence
(top), and the learned attention weights for the aspect size (middel) as well as
the aspect weight (bottom).

4.4 Qualitative Analysis

To better understand the performance of the proposed approach, we further anal-
yse the computed attentions and reveal interesting insights. Figure 2 and Figure 3
show two example sentences with one and two aspects, respectively. One can see
the constituency trees of the sentences and the learned attention weights with
respect to the corresponding aspect word. On one hand, graph attention, which
only models the relations between memories (i.e. sentence structure), appears
to effectively identify the important memories related to the context (aspect),
and assigns them high weights. On the other hand, content-based (i.e. semantic)
attention only considers the meanings of the words without syntactic clues. As
a consequence, it highlights all the sentiment keywords, even if it is not related
to the context. For example, “fresh” is actually not for the aspect word “food”
in Fig. 2, and “ideal” not for the aspect word “weight” in Fig. 3. The mixed
attention (graph + semantic) takes advantage of both relational and content
information to identify in-context memories, and thus better discovers the im-
portant words w.r.t. the given aspects. One can see that the words “delicious”
(Fig. 2 for the aspect “food”), “ideal” (Fig. 3 for the aspect “size”) and “ac-
ceptable” (Fig. 3 for the aspect “weight”) capture larger attentions with scores
of 0.41, 0.26 and 0.22 respectively.



Fig. 4: Examples of the learned attention weights at each hop.

We also perform analysis on the effectiveness of a deep structure (i.e., multiple
layers attentions). As shown in Fig. 4, one can find that one layer of mixed
attention is not always enough to handle complex sentences. With more layers,
the attention weights appear to be refined at each pass and gradually focus on the
important words. For example, the word “delicious” has its score increasing from
0.41 to 0.59 with the number of layers, and simultaneously the noise caused by
other words in the sentence is reduced. In addition, we investigate the influence
of the different tree structures of the sentences on the graph attentions. Fig. 5
illustrates with an example sentence with two aspects. Although the exact values
of the attention weights learned from the two tree structures are slightly different,
they reveal similar tendency: the words having close syntactic relations with the
aspect words get larger attention weights and vice versa.

5 Conclusion

In this paper we present a graph enhanced memory network (GEMN) to incorpo-
rate relational information for better predicting and reasoning the final response
to the question of interest. We introduce a new type of attentions, graph at-
tentions, to model the graph structure of the memories. The graph attentions
are mixed with the content based attentions via an additional neural network
layer, which flexibly learns the combination of both relational and content in-
formation. In turn the GEMN can better identify and manipulate the relevant
memories w.r.t. the given question. The GEMN is applied to aspect-based sen-



(a) Constituency tree

(b) Dependency tree

(c) Weights for the aspect “size”

(d) Weights for the aspect “weight”

Fig. 5: Graph attentions learned from the different tree structures

timent classification, and the empirical analysis on real data demonstrates supe-
rior performance. Our work provides interesting avenues for future work, such as
graph enhanced memory networks for question-answering and knowledge graph
reasoning.
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