SEARCH VIDEO ACTION PROPOSAL WITH RECURRENT AND STATIC YOLO

Romain Vial*, Hongyuan Zhux, Yonghong Tian'o, Shijian Lux

* MINES ParisTech, PSL Research University, France
* Institute for Infocomm Research, A*STAR, Singapore
o Peking University, China

ABSTRACT

In this paper, we propose a new approach for searching action
proposals in unconstrained videos. Our method first produces
snippet action proposals by combining state-of-the-art YOLO
detector (Static YOLO) and our regression based RNN detec-
tor (Recurrent YOLO). Then, these short action proposals are
integrated to form final action proposals by solving two-pass
dynamic programming which maximizes actioness score and
temporal smoothness concurrently. Our experimental com-
parison with other state-of-the-arts on challenging UCF101
dataset shows that our method advances state-of-the-art pro-
posal generation performance while maintaining low compu-
tational cost.

Index Terms— action detection, action localization, ac-
tion proposal, video object proposal, video object detection

1. INTRODUCTION

The explosion of video-streams has greatly boosted the de-
velopment of related video analysis technologies. However,
directly processing raw-video streams is computational ex-
pensive and may also hurt learning accuracy due to a large
number of irrelevant background and motion changes, while
meaningful human actions only take up a small portion of
the videos. Hence, action proposal which produces a small
number of sequences of bounding box has been attracting in-
creasingly attentions in recent years.

This paper presents a new approach for video action pro-
posal. Existing works have tackled the problem from different
perspectives, e.g. voxel segmentation- and merging [1], dense
motion feature tracking [2], human-centric models and object
proposal [3, 4]. Though much progress has been achieved,
video action proposal is still a challenging problem. Differ-
ent from static proposal which relies on appearance cue only,
action proposals need to consider not only spatial context in
the current frame but also temporal context among adjacent
frames. Due to the diversity and variations of human actions,
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background clutters and other dynamic motions, existing suc-
cessful static proposal does not perform well for action recog-
nition tasks.

To handle these challenges, we propose a novel frame-
work for action proposal based on the latest development of
deep learning, which combines the recent popular YOLO de-
tector [5] with Recurrent Neural Network (RNN). Our frame-
work complements existing frame level action proposal infer-
ence with temporal dynamic modeling using RNN. Hence the
frame-level proposal can be generated by using strong CNN,
meanwhile the objectness information from other frames can
be propagated by RNN which provides rich temporal con-
text information. These information are integrated together
to form snippet-level action proposals and then we solve two
dynamic programming problems to form final action proposal
tubes. To evaluate the performance of action proposals, we
test our method on challenging UCF-101 dataset. We no-
tice that a small number of action proposals, e.g. 30 proposal
tubes can already provide promising recall rate at a speed of
SFPS. Different from existing action proposal approaches, our
action proposals do not rely on video segmentation hence are
computationally efficient.

To summarize our achievements:

1. We propose the first recurrent video action proposal
method by exploring the regression capability of RNN
to exploit the spatial and temporal information simulta-
neously, to the best of our knowledge.

2. We formulate the action proposal generation as energy
maximization problem which considers both actionness
measure and temporal overlap.

3. Experiment on UCF-101 dataset proves that our method
achieves the state-of-the-art performance.

2. METHODOLOGY

Our framework firstly regresses the snippet-level action pro-
posals with Recurrent YOLO and static YOLO, as shown in
Fig. 1. The snipped proposals are seamed into final action
proposal by solving two-stage dynamic programming with
trimming and some final proposals are shown in Fig. 3.



2.1. Recurrent YOLO and Static YOLO

Most proposal methods use hand-crafted features (e.g. Edge-
Box [6] and SelectiveSearch [7]) or train ConvNets to perform
detection on static images (e.g YOLO [5], FasterRCNN [8]
and Actioness Estimation [9]), which ignores the temporal
context. Hence, we explore to integrate spatial-temporal con-
text among adjacent frames by using recent popular RNN.
RNN has been applied to perform video classification [10]
and fuse feature maps for static detection [11] and seman-
tic segmentation [12, 13], however the application of RNN
for object detections are less discussed. In this work, we ex-
plored the regression capability of RNN to directly regress the
coordinates and confidence of the bounding boxes of potential
action regions, which is inspired by the recent popular YOLO
detector [5].

Static YOLO divides the image into K x K grid (K = 7in
our work). Each grid cell will predicts B = 2 bounding boxes
with the confidence score that the box contains an object of
interest and it will also predict an actioness score (Sqc, Spg)-
Hence the output prediction is a K x K x (B x 5+ 2) tensor,
where each bounding box is parametrized by (z,y,w, h, C)
where (z,y) represent the center of the box relative to the
bounds of the grid cell. The box’s width and height are nor-
malized with respect to the whole image’s width and height.
The confidence C' predicts the objectness score of a bounding
box. The parameters s,. and s, predict the a box’s likeli-
hood belongs to “action’ or *background’. The loss function
is similarly defined as in [5]:
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where 1°%/ denotes if object appears in cell i and 1;’]17 7 denotes
that the jth bounding box predictor in cell ¢ is “responsible”
for the prediction. The loss function penalizes classification
error if object appears in the grid cell. It also penalizes bound-
ing box coordinate error if that predictor has the highest over-
lap with the ground-truth in that grid cell [5]

Recurrent YOLO uses the same loss function as Static
YOLO, but replaces the last fully connected layer of Static
version by a Long-Short Term Memory (LSTM), a recent
popular variant of RNN, whose hidden cell has a dimension
of 588. Hence, we use the powerful base ConvNet of Static

YOLO as feature extractor, and train an LSTM on top of the
CNN to directly regress the coordinates of the bounding box
that contains actions. Hence, we can consider spatial and and
temporal context with a single framework. The output activa-
tion function is the linear activation. We apply dropout with
0.5 to avoid over-fitting.

We use Adam [14] optimizer during training with default
parameters. While training the Static YOLO, we use a batch
size of 32 frames from different videos during 100 epochs
with an initial learning rate of 10~2 decaying and 10~* after
the 20*" epoch. When training the Recurrent YOLO, we then
use a batch size of 10 sequences of 10 frames from different
videos during 50 epochs. The same learning rate planning is
used.

After training the recurrent YOLO and static YOLO,
we combine these two methods to produce high quality se-
quences of proposals.

2.2. Path Linking and Trimming

The output of Sec. 2.1 is a set of bounding boxes for each
frame of the video B = {{bz(»]),j € [1...Ny]},i
[L...T]} where T is the length of the video and Ny, is the
number of predicted boxes in frame 7. For each box bgj ) we
have its confidence score C, action score s, and background
SCOTE Spg.

The next objective is to create a set of proposal paths P =
{pi = {bs,,bs,41...be; },i € [1...|P|]} where s; and e;
are, respectively, the starting frame and ending frame of path
p;. The action proposal can be generated by solving two-stage
energy maximization problems.
2.2.1. Action Path Linking

The first energy function scores a path p as follows:

T T
S(p) = se(bi) +Xo x Y _ ToU (bi, bi—1)
=1 =2 . :
unary parrwise

The unary term helps to choose the best scored boxes, which
are supposed to be the most well located, and the pairwise
term increases coherence of the path by avoiding jumping
from one position in the frame to another. )\ is a trade-off
factor.

Given the set of boxes B, we can solve the maximization
problem and find the best path p using the Viterbi algorithm.
After the optimal path is found, the boxes in p are removed
and the algorithm is solved again. This is repeated until one
of the frames contains no predicted boxes. We can also stop
the algorithm earlier by setting a maximum number of paths.

2.2.2. Temporal Action Proposal Trimming

The action proposal generated at Sec. 2.2.1 spans the entire
video duration, while human actions typically only occupy a
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Fig. 1. Conceptual illustration of our method: we explore the regression capability of RNN and CNN to directly regress
snippet-level action proposals. Then these proposals are seamed into longer action proposals with dynamic programming(to be

described in Sec. 2.2).
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Fig. 2. . Recall vs IoU and Recall-per-Class on UCF-101 datasets.

fraction of it, hence it is necessary to perform temporal trim-
ming. The first pass of dynamic programming aims at ex-
tracting connected paths by penalizing regions which do not
overlap in time. As a result, however, not all detection boxes
within a path exhibit strong actionness scores.

To perform temporal trimming, each box of a path p will
be assigned a binary label I; € {bg, ac}, subject to the con-
dition that the path’s labeling is consistent with 1) the unary
scores and 2) is smooth (no sudden jumps). Hence, we assign
the following score to the path’s labeling L, = [l;...[7],
which is adapted from [15]:

T T
S(Ly) = Z st (bi) — A1 % Z o(li,li-1)
i=1 =2
unary pairwise
where )\ is a trade-off factor and
0 ifl; =1,

o(lislio1) = {

oy, otherwise

where o and «y,4 are parameters set by cross-validation.
The unary term of Eq. 2.2.2 tries to maximize the global
score of the labeling by assigning the frame-label with the
highest score whereas the pairwise term tend to avoid not
smooth labeling. It can also be solved by the Viterbi algo-

rithm as in Sec. 2.2.1. All consecutive frames assigned to the
action label are extracted and constitute the final action paths.

3. EXPERIMENT

UCF-101 is a popular challenging dataset to date, and con-
tains untrimmed sequences with large variation in camera mo-
tion, appearance, human pose, background clutter, scale and
illumination. It contains 3207 video clips with 24 categories
of actions with bounding box annotations. Although each
video contains a single action category, it may contain multi-
ple instances of the same action class. We evaluate our algo-
rithm on split 1 as in [16] .

We first evaluate the performance of our action proposals
based on the recall. We consider a hit of ground-truth G if the
spatial-temporal intersection-over-union (IOU) ¢(p,G) > 6
as in [4], and p is the predicted proposal, G is the ground-
truth tube, and @ is the overlap threshold. Fig. 2 shows the re-
call of our action proposal algorithm for various IoU thresh-
old and the recall for each class. One can observe that our
method achieves the state-of-the-arts in proposal generation
in a wide range of IoU threshold. Moreover, our method also
perform well in a wider range of action classes, which means
our method can generalize across classes. Fig. 4 shows the
ablation study for each components. Recurrent YOLO per-
forms slightly better than static YOLO. It is because the re-



Fig. 3. . Qualitative results for randomly sampled 4 videos in UCF-101 datasets. The bounding boxes with green and red color
are the ground-truth and the action proposal which has an IoU > 0.5 with the ground-truth, respectively.

current YOLO captures the long-range temporal dynamics of
human actions. While the ensemble of both detectors im-
prove the recall by 1.5% and 2% over the recurrent YOLO
and static YOLO respectively, which shows that static and re-
current YOLO are complementary to each other.

Finally, we report the overall performance in Table. 1 us-
ing several commonly used metrics, including ABO (Average
Best Overlap), MABO (Mean ABO over all classes) and aver-
age number of proposals per video, which are also commonly
used metric [4]. The result further confirms the superior per-
formance of our method than the state-of-the-arts in terms of
MABO, Recall using a small number of proposals.

In Fig. 3, a few action proposals are illustrated with red
rectangles. We can see that even with serious pose and scale
changes, our action proposal can correctly localize the same
actors under various challenges with abrupt motion change,
background clutters and illumination variation.

ABO MABO Recall #Proposal
UCF-101
Brox etal [1] 13.28  12.82 1.40 3
Yu et al.[16] n.a n.a 0.0 10,000
APT [4] 40.77 3997 3545 2299
Lietal. [3] 63.76  40.84  39.64 18
Ours 4751 47.72  50.46 35

Table 1. Quantitative comparison with the state-of-the-arts
with commonly used metrics.
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Fig. 4. . Recall vs IoU on UCF-101 for static and recurrent.

4. CONCLUSION

We propose a novel framework for searching action propos-
als in video clips. Given an unconstrained video as input,
our method produces a relatively small number of spatially
compact and temporally smooth action proposals. The pro-
posed method combines the state-of-the-art YOLO detector
with RNN to sequentially regress action proposal, hence help
improve the localization accuracy and reduce the number of
false positives. These snippet proposals are further integrated
by maximizing two energy functions with dynamic program-
ming. The experimental results on challenging UCF-101
dataset highlights the effectiveness of our modeling.
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