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Introduction
Video Understanding Tasks
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[Abu-El- Halja et a/ arX|v 2016] [Heilbron et al., CVPR 2015] u [Saha et al., BMVC 2016]
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Introduction
Action Proposal

Def.: Produce a set of candidate
spatio-temporal tubes that are likely
to contain a human action.

Why? To reduce the computational
complexity of further tasks (e.g.
classification) by trimming the video
in highly discriminative sections.




Related work

—_—

Segmentation of point trajectories based on
optical flow [T. Brox et al., ECCV 2010]

Supervoxel segmentation and hierarchical [ * Low-level hand-crafted features
clustering [D. Oneata et al., ECCV 2014] * Only local temporal context

Dense Trajectories extraction with clustering
[J. C. Gemert et al., BMVC 2015]

—

Frames are processed individually

* Not end-to-end

Human-centric RPN with optical flow motion
estimation [N. Li et al., ACCV 2016]



Our model for action proposal
Motivations

Based on previous approaches limitations, we want:
* to handle long-term temporal relationship for bounding box regression
* in an end-to-end framework

e with seamless integration of the bounding box linking method

5/19



Our model for action proposal
Overall architecture
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Our model for action proposal
YOLO detector [J. Redmon et al., CVPR 2016]

Frame processing:

* Divide theimageina § X S grid

* Predict B = 2 bounding boxes per
grid cell with a confidence score C
(human estimator)

" T TR AT
(O Uy e
Final detections

* Predict one actionness (s,.) and
baCkgroundneSS (SbC) score per Class probability map

grid cell (motion estimator)
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Our model for action proposal
Temporal enhancement with LSTM

Use frame-by-frame regression,

useful for motionless activities. E\j Cj E]
Dense Dense Dense

—> YOLO as a Feature Extractor Fusion

P e I N

|
k XO see Xt
RGB sequences
LSTM 5 LSTM " 1LSTM

Use regression capability of
LSTM to produce proposal with
long-term relationship.
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Our model for action proposal
Path generation

From the frame proposal method we have a set of bounding boxes:

B = (B, ={b}..b"}, te[1..T])

l

We want to output a set of proposal paths:
P={p; ={bs,bs,+1, - be,}, i€[1..[P[]}
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Our model for action proposal
Path generation

Path Linking:

High confidence, coherent paths that span
the entire video duration

T T
S() = ) C(b) +29 % ) 10U(by,bi_y)
i=1 i=2

o e

unary pairwise
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Our model for action proposal
Path generation

Path Trimming: [S. Sahaetal., BMVC 2016]

Trimmed paths with high human action
likelihood

T T
S(p) — z Sli(bi) _ Al X 1{li¢li—1} X ali
= . = ) -
un&ry pairT\/vise

where [; € {ac,bg}, a;, >0
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Experiments
Dataset

UCF 101 [K. Soomro et al., CRVC-TR-12-01]

Widely used dataset (600+ citations) release
in 2012

a7 * 13k+ videos in 101 action categories

* We use a subset of 24 classes with bounding

box annotations of human
[Y.-G. Jiang et al., ICCV Action Workshop 2013]
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Experiments
Metrics

Intersection over Union:

Average Best Overlap:

ABO(P,G) = Gl 2 maxloU(p,g)

MABO = ZABO(P GS)

CEC




Experiments
Quantitative results

* Recurrent version is slightly better than static one

* +8% in recall by ensembling static and recurrent versions at 0.5 loU

Recall
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UCF-101: recall (%) per loU threshold
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Experiments
Quantitative results

UCF101 ABO MABO Recall # UCF-101: recall (%) per loU threshold
Broxetal. 13.2 12.82 1.40 3 1
Yu et al. n.a n.a 0.0 10k
0.8
APT 40.8 39.97 3545 2k
Lietal. 63.8 40.84 39.64 18 _ 06 roxecerto
b Yu cvpr-15
Ours 47,5 47.72 50.46 35 < 94 e APT bmveds
Li accv-16
0-2 = Ours (S+R)
0
0 0.2 0.4 0.6 0.8 1
loU
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Experiments
Quantitative results
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RopeCliming (Easiest)
Soccer Juggling
SkateBoarding
HorseRiding
IceDancing
FloorGymnastics
GolfSwing
WalkingWithDog
Skiing

Skijet
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Longlump
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TrampolineJumping
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Diving

CliffDiving
BasketballDunk
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Basketball (Challenging)
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Experiments
Qualitative results
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Conclusion

* We handled long-term temporal relationship with LSTM for
regressing bounding boxes in an end-to-end architecture

* We formulated the path generation as an energy-maximization
problem which considers both actionness measure and temporal
overlap

* We validated our approach on UCF-101 dataset and proved that our
method achieves state-of-the-art performance



Thank youl!

» Email: romain.vial@mines-paristech.fr

» Website: http://romainvial.xyz
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