SEARCH VIDEO ACTION PROPOSAL WITH RECURRENT AND STATIC YOLO

Romain Vial, Hongyuan Zhu, Yonghong Tian, Shijian Lu

Institute for Infocomm Research

Introduction Video Understanding Tasks

Classification

Prediction of the overall category of the video (e.g. Football, Concert)

Temporal Detection

Prediction of the temporal location of the action in the video

Tubes Detection

Localize both spatially and temporally the action in the video

[Abu-El-Haija *et al.*, arXiv 2016]

[Heilbron *et al.,* CVPR 2015]

Introduction Action Proposal

Def.: Produce a set of candidate spatio-temporal tubes that are likely to contain a human action.

Why? To reduce the computational complexity of further tasks (e.g. classification) by trimming the video in highly discriminative sections.

Related work

- Segmentation of point trajectories based on optical flow [T. Brox *et al.*, ECCV 2010]
- Supervoxel segmentation and hierarchical clustering [D. Oneata *et al.*, ECCV 2014]
- Dense Trajectories extraction with clustering
 [J. C. Gemert *et al.*, BMVC 2015]
- Human-centric RPN with optical flow motion estimation [N. Li *et al.*, ACCV 2016]

- Low-level hand-crafted features
- Only local temporal context

- Frames are processed individually
- Not end-to-end

Our model for action proposal Motivations

Based on previous approaches limitations, we want:

- to handle long-term temporal relationship for bounding box regression
- in an end-to-end framework
- with seamless integration of the bounding box linking method

Our model for action proposal Overall architecture

Our model for action proposal YOLO detector [J. Redmon et al., CVPR 2016]

Frame processing:

- Divide the image in a $S \times S$ grid
- Predict B = 2 bounding boxes per grid cell with a confidence score C (human estimator)
- Predict one actionness (s_{ac}) and backgroundness (s_{bc}) score per grid cell (motion estimator)

Our model for action proposal Temporal enhancement with LSTM

Our model for action proposal Path generation

From the frame proposal method we have a set of bounding boxes:

$$\mathcal{B} = \{\mathcal{B}_t = \left\{b_t^1 \dots b_t^{|\mathcal{B}_t|}\right\}, \qquad t \in [1 \dots T]\}$$

We want to output a set of proposal paths:

$$\mathbf{P} = \{ p_i = \{ b_{s_i}, b_{s_i+1}, \dots, b_{e_i} \}, \qquad i \in [1 \dots |\mathbf{P}|] \}$$

Our model for action proposal Path generation

Path Linking:

High confidence, coherent paths that span the entire video duration

$$S(p) = \sum_{\substack{i=1\\unary}}^{T} C(b_i) + \lambda_0 \times \sum_{\substack{i=2\\i=2}}^{T} IoU(b_i, b_{i-1})$$

Our model for action proposal Path generation

Path Trimming: [S. Saha et al., BMVC 2016]

Trimmed paths with high human action likelihood

$$S(p) = \sum_{\substack{i=1\\unary}}^{T} s_{l_i}(b_i) - \lambda_1 \times \sum_{\substack{i=2\\i=2}}^{T} 1_{\{l_i \neq l_{i-1}\}} \times \alpha_{l_i}$$

where $l_i \in \{ac, bg\}, \ \alpha_{l_i} > 0$

Experiments Dataset

UCF 101 [K. Soomro et al., CRVC-TR-12-01]

- Widely used dataset (600+ citations) released in 2012
- 13k+ videos in 101 action categories
- We use a subset of 24 classes with bounding box annotations of human [Y.-G. Jiang *et al.*, ICCV Action Workshop 2013]

Experiments *Metrics*

Experiments *Quantitative results*

- Recurrent version is slightly better than static one
- +8% in recall by ensembling static and recurrent versions at 0.5 IoU

14/19

Experiments *Quantitative results*

Experiments *Quantitative results*

- RopeCliming (Easiest)
- Soccer Juggling
- SkateBoarding
- HorseRiding
- IceDancing
- FloorGymnastics
- GolfSwing
- WalkingWithDog
- Skiing
- Skijet
- Fencing
- Biking
- LongJump
- SalsaSpin
- Surfing
- TrampolineJumping
- PoleVault
- TennisSwing
- CricketBowling
- Diving
- CliffDiving
- BasketballDunk
- VolleyballSpiking
- Basketball (Challenging)

Experiments *Qualitative results*

Conclusion

- We handled **long-term temporal relationship with LSTM** for regressing bounding boxes in an **end-to-end architecture**
- We formulated the path generation as an energy-maximization problem which considers both actionness measure and temporal overlap
- We validated our approach on UCF-101 dataset and proved that our method achieves state-of-the-art performance

Thank you!

Email: romain.vial@mines-paristech.fr

Website: <u>http://romainvial.xyz</u>