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YoTube: Searching Action Proposal via Recurrent
and Static Regression Networks

Hongyuan Zhu?, Romain Vial?, Shijian Lu, Xi Peng, Huazhu Fu,
Yonghong Tian, Xianbin Cao

Abstract—In this paper, we propose YoTube—a novel
deep learning framework for generating action proposals in
untrimmed videos, where each action proposal corresponds to a
spatial-temporal tube that potentially locates one human action.
Most of the existing works generate proposals by clustering
low-level features or linking image proposals, which ignore the
interplay between long-term temporal context and short-term
cues. Different from these works, our method considers the
interplay by designing a new recurrent YoTube detector and static
YoTube detector. The recurrent YoTube detector sequentially
regresses candidate bounding boxes using RNN learned long-
term temporal contexts. The static YoTube detector produces
bounding boxes using rich appearance cues in every single frame.
To fully exploit the complementary appearance, motion, and
temporal context, we train the recurrent and static detector using
RGB and Flow information. Moreover, we fuse the corresponding
outputs of the detectors to produce accurate and robust proposal
boxes and obtain the final action proposals by linking the
proposal boxes using dynamic programming with a novel path
trimming method. Benefiting from the pipeline of our method,
the untrimmed video could be effectively and efficiently handled.
Extensive experiments on the challenging UCF-101, UCF-Sports,
JHMDB datasets show superior performance of the proposed
method compared with the state of the arts.

I. INTRODUCTION

Action proposal aims to extract a small number of spatial-
temporal paths to cover all potential regions corresponding to
human actions. As it could significantly reduce the size of
search space, there is increasing attention in video analytics
tasks [1]–[12]. Different from action recognition [13]–[19],
action proposal mines all potential action regions from one
video rather than classifying the whole video into existing
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categories. Comparing with action detection [20]–[22], action
proposal generates generic action regions instead of focusing
on the specific action defined by training data. A conceptual
illustration of the difference among action proposal, action
recognition, and action detection could be found in Fig. 1.

Action Proposal Action Recgonition Action Dectection

Fig. 1. Conceptual illustration of the difference among action proposal,
action recognition, and action detection. Action proposal tries to extract
all possible human actions which are highlighted using dash-lines. Action
recognition aims to classify the whole video into specific categories, e.g.,
’Jump’. Action detection aims at detecting when and where a specific action
appears (highlighted using solid-lines).

Despite the success of object proposals in images [23], [24],
it is extremely challenging to generate action proposals in
videos due to following reasons. First, the extensively inves-
tigated image object proposal only relies on appearance and
spatial cues, whereas action proposal takes appearance, motion
and temporal information into consideration. What is more
challenging is learning effective actioness cues to differentiate
human actions from commonly occurred background clutters
and other dynamic motion, given the diversity and variations of
human actions. Second, the search space of action proposals
is exponentially larger than image object proposal since the
former is with the additional temporal dimension. In practice,
it is infeasible to enumerate all possible candidates to pick
action proposals. Third, the raw video content is generally
untrimmed, which brings in temporal noises and needs further
elaborate post-processing to trim the action paths.

To holistically address the above challenges, we propose a
novel deep learning framework called YoTube that generates
spatially compact and temporally smooth action proposals
for untrimmed videos by simultaneously considering the ap-
pearance, motion and temporal information. In details, our
framework consists of a novel recurrent YoTube detector and
a static YoTube detector. The recurrent YoTube detector is
based on a novel recurrent regression network that sequentially
predicts the bounding boxes using adjacent frame temporal
contexts in one-shot. The static YoTube detector is designed
for better exploiting the rich global appearance and motion
cues within each individual frame. The outputs of these
two networks are further fused to exploit the complementary
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information between short-term and long-term contexts. After
that, our method gives initial action proposals by linking
the candidate action boxes in terms of their actionness score
and overlap in the spatial-temporal domain. Furthermore, we
propose a novel temporal path trimming method to handle the
untrimmed videos by utilizing the actioness and background
score transition pattern.

The contributions of our paper lie in following aspects:
• A novel deep learning framework for action proposal

is proposed, which learns discriminative actioness cues
from video by considering the short-term appearance, mo-
tion information, and the long-term temporal information.

• A novel recurrent regression network is introduced to
capture the long-term temporal information for action
proposal, which is ignored in recent works.

• An efficient and accurate path trimming technique is
proposed to deal with untrimmed videos.

• Extensive experiments are carried out on UCF-101, UCF-
Sports and JHMDB dataset, which demonstrate the supe-
rior performance of our method.

A preliminary conference version of our work appeared
in [25], which only adopts the RGB information and ap-
plies a less efficient path trimming method. Moreover, the
experiment was conducted only on the UCF-101 dataset. This
paper extends the conference work by additionally considering
the motion information from flow images and proposing a
more efficient and accurate path trimming method to trim
the action proposal. Furthermore, this work performs more
detailed analysis and extensive experiments involving more
state-of-the-art methods on three challenging datasets (UCF-
101, UCF-Sports, and JHMDB dataset).

II. RELATED WORK

Recurrent Neural Network:
Recurrent Neural Network, especially Long-Short Term

Memory (LSTM) [26] has become popular for sequence
generation and prediction tasks. A detailed survey of recent
RNN models and applications could be found in [27]. In this
work, we mainly discuss RNNs based action recognition and
detection.

Veeriah et al. [28] proposed a differential gating scheme
to capture the changes between two successive frames. Don-
ahue et al. [29] developed a novel recurrent convolutional
architecture and successfully applied it to video recognition,
image description and video narration. Wu et al. [30], [31] and
Ng et al.[19] demonstrated that an average fusion of LSTMS
with appearance and flow boosts the prediction performance.
Although our work also employs LSTM to learn long-term
temporal contexts, it is different from existing works since
we employ the LSTM to predict bounding boxes instead of
class labels. Moreover, we trained a CNN using a larger
resolution images for feature extraction, which facilitates the
action proposal task.

Recently, RNN has been applied to refine tracking-by-
detection result. For example, Ni et al. [32] applied an LSTM
to refine the tracked objects or human parts captured in each
image frame. Stewart and Andriluka [33] applied an LSTM

to aggregate contexts from adjacent detections so that the
detected face in the image is progressively refined. Comparing
with these methods, the proposed recurrent regression network
is designed for video action proposal, which predicts bounding
boxes in one-shot without a usage of other detectors and
multiple pass regime, thus embracing computational efficiency.

Regression based Object Detection: Most recent deep
learning detection methods perform detection by classifying
object proposals (e.g. selective search [23], EdgeBox [34]) or
directly regressing the coordinates of bounding boxes based
on local features. The typical methods include but not limited
to Region Proposal Network [35] and SSD [36]. Recently,
[37] proposes YOLO to perform inference using global image
feature and achieves impressive results, which exploits the
context information of the whole image to avoid the influence
from the background.

To reduce the influence from the background, our work
also exploits the global image features for bounding box
regression. The architecture of our CNN is different from that
of YOLO. More specifically, we replace the last two fully
connected layers of YOLO with a locally connected dense
layer, thus reducing the computational overhead. Experimental
result verifies that such a difference improves the accuracy
of our method by nearly 5%. Moreover, YOLO and other
detectors are mainly designed for image object detection,
which neglects the useful temporal context information. In
contrast, our work explores the regression capability of RNN
for video action proposal. The extensive experimental study
reveals that the combination of RNN and CNN yields superior
performance over either one of them alone.

Action Recognition Following the impressive performance
of CNNs in image recognition, deep learning approaches were
applied to action recognition. A thorough survey on recent
deep action recognition methods could be found in [38] and
[39]. Here we summarize the influential works according to
different pipelines.

Existing deep action recognition architectures could be
divided into three groups according to [39]. To be exact,
1) image based action recognition methods directly extract
the off-the-shelf CNN features pre-trained on the ImageNet
and then pass the features through a learned SVM classifier
[13], [14]; 2) end-to-end snippet learning methods learn video
features using the appearance cues of short video snippets. For
example, Ji et al. [40] introduced the 3D-CNN that operates
on the stacked video frames. Karpathy et al. [15] compared
several similar 3D-CNN architectures on the large-scale video
classification task. Tran et al. [16] proposed the C3D model
which has inspired numerous works, such as R-C3D [41] and
Segment-CNN [42]. Recently, Simonyan and Zisserman [17]
propose a two-stream approach to break down the video fea-
ture learning into the learning of separate spatial and temporal
clues, thus greatly reducing the learning overload in C3D
and improving the recognition performance. In [18], the two-
stream approach has been extended with dense trajectories.
3) long-term temporal modeling overcomes the limitations of
short-snippet learning method by using RNN/LSTM to capture
the long range temporal contexts. For example, [29] and [30]
trained an LSTM on the top of CNN for video recognition.
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Fig. 2. Conceptual illustration of our method: we utilize the regression capability of RNN and CNN to directly regress the sequences of bounding boxes
and then seam the boxes into longer action proposals using path linking and trimming.

Ng et al. [19] further stacked multiple layers of LSTM and
compared different pooling strategies. The technical difference
with the long-term temporal modeling is discussed in the
section of Recurrent Neural Network.

Our work explores to combine the advantages of short-
snippet modeling and long-term temporal modeling in action
recognition for action proposal. We show that both networks
are complementary with each other and could deliver signifi-
cant performance improvement.

Action Proposal: To reduce the search space, action pro-
posal generates sequences of bounding boxes with good lo-
calization of candidate human actions in the spatio-temporal
domain, which avoids the rigid structure requirement of early
works [43]–[46].

Unsupervised image proposals [23], [24] have been ex-
tended for video action proposal. Jain et al. [47] extend
Selective Search [23] by clustering the videos into voxels and
then hierarchically merging the voxels to produce action pro-
posals. Similarly, Oneata et al. [48] extend [24] by introducing
a randomized supervoxel segmentation method for proposal
generation. Inspired by the video segmentation method in
[49], Jain et al. [50] propose to generate action proposals by
clustering long term point trajectories with improved speed
and accuracy. However, they are based on low-level features
which make difficulties in handling videos with rich motion.

Supervised detectors have also been introduced to the action
proposal by learning actioness cues using labels. Yu et al.
[51] use human detector and generate the action proposal
by using max sub-path search. Inspired by the success of
deep learning, Gkioxari and Malik [52] propose to train two
stream R-CNN networks [53] which learns actioness cues
with selective search to detect action regions. They link the
high scored action boxes to form action tubes. In class-
specific action detection, Saha et al.[21] and Peng et al.[22]
propose to use region proposal networks (RPN) to generate
frame proposals and then classify these regions are by Fast-
RCNN. Detection-and-tracking methods have also been used
for action localization and action proposal. Weinzaepfel [20]
train a two-stream R-CNN to detect action regions and an
additional instance-level detector to track the regions with
Spatio-Temporal Motion Histogram. Inspired by these works,
Li et al.[54] also trains RPN [35] to replace R-CNN in [20]

for generating proposal boxes, Moreover, their method uses
an improved method of [51] to generate action proposals. The
missed detections are remedied by tracking-by-detection and
their method has achieved the state-of-the-art performance.

Most of these works [47], [48], [50]–[52] generate proposals
for each frame individually without considering the temporal
contexts or just considering the contexts in very short snippets
[54]. Moreover, they generally work on trimmed videos [47],
[48], [50], [52]. To handle untrimmed video, extra detectors
need to be trained using low-level features, thus leading to
errors accumulation and higher time consumption [20]–[22],
[54].

Different from the above works, we propose a 4-way
network fusion scheme to combine the short-term and long-
term information given by the recurrent and static regression
networks respectively. Our method uses a novel recurrent
regression network to capture the long-term temporal context
which is largely neglected in recent works of action pro-
posal. In addition, we use the global features instead of local
features to perform inference, thus reducing the interference
from background clutter. Finally, we design an efficient path
trimming technique which is capable of handling untrimmed
videos directly without requiring time-consuming techniques
of existing methods [20]–[22], [54]

Information Fusion: Fusing information from multiple
sources has shown effectiveness in various tasks. A compre-
hensive survey on this topic could be found in [55] and [56].
Here, we mainly focus on the works related to object detection,
action/event recognition and action detection based on neural
networks.

A popular approach is to perform fusion at the input level.
Some static object detection methods stack images generated
from multiple-sensors such as multi-spectral camera [57] and
RGB-D camera [58]. To achieve action recognition, C3D[16],
[40] applies the 3D-Convolution on stacked image frames.
Another popular approach is to perform fusion at the feature
level. In RGB-D object/scene-recognition, Wang et al. [59],
[60] and Zhu et al. [61] proposed to use auto-encoder and
correlation analysis to fuse the features from RGB and Depth,
respectively. Wu et al.[30] and Feichtenhofer et al.[62] pro-
posed to directly concatenate the RGB and Flow features for
action recognition. The third approach is to perform fusion at
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the output level. Recently, Zhang et al. [63] propose using
an auto-encoder to perform late fusion on the results of
dense trajectories generation, scene classification and object
detection. Zhang et al. [64] also proposed dynamically fusing
the motion and image cues for video description. Simonyan
and Zisserman [17] proposed a late fusion scheme to train
a two-stream network for the purpose of extracting features
from RGB and Flow frames.

Our model adopts the late fusion since [17], [21], [22],
[30] has validated its effectiveness in class-specific action
recognition and action detection. The major difference be-
tween our work and existing ones is that we perform 4-
way fusion by considering the recurrent and static regression
networks trained on RGB and Flow frames for action proposal.
Another advantage of our model is that it does not require any
external multi-channel sensors such as [57]–[61]. As a result,
our method is easier to deploy. It should be pointed out that
[65] is is proposed for object tracking, in which the “fusion”
concept is different from the score/modality fusion concept
discussed in our work. The fusion concept here is more about
“model updating”, i.e., updating the old model by using newly
classified examples.

III. METHODOLOGY

The proposed method inputs an untrimmed video and out-
puts the action proposal accordingly. Fig. 2 illustrates the
flowchart of our framework which consists of two steps:
1) using recurrent and static YoTube to predict sequential
candidate action bounding boxes; 2) linking and trimming
action path.

…
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Fig. 3. Using a video snippet as the input, the proposed recurrent YoTube
detector first extracts discriminative features from each frame and then applies
the LSTM to regress the coordinates of the bounding boxes. The bounding
boxes of each frame is estimated by considering the rich spatial and temporal
context in the forward direction.

A. YoTube for Action Candidate Boxes Generation

One limitation of existing deep action proposal methods
is that they either process a video frame-by-frame [52] or
separate spatial and temporal information learning into two
isolated processes [20], [54]. Moreover, temporal dynamics
and contexts between two adjacent frames have been proven to
be useful in action classification and video description [29]. In
this paper, we design a neural network based fusion framework
to incorporate the appearance, motion and temporal context
learning in an end-to-end optimizable manner.

We first describe the recurrent YoTube — a recurrent
regression network, which is used to predict the bounding

boxes for each frame by leveraging the temporal contexts from
adjacent frames. Fig. 3 depicts the architecture of recurrent
YoTube detector which passes the frame ft at time t into a
CNN to produce a fixed-length feature xt. Then a recurrent
LSTM maps xt and the previous time step hidden state ht−1
into a new hidden state ht and bounding boxes ot. The
inference is sequentially conducted from top to bottom as
illustrated in Fig. 3. Benefit from the used network, the context
in earlier frames tl (tl < t) can be propagated into the current
frame t.

The output ot for the frame t is a K ×K × (B × 5 + |S|)
tensor which encodes the output bounding boxes information.
Specifically, the image is divided into K ×K grids and each
grid cell will predict B bounding boxes parameterized by
(x, y, w, h, c), where (x, y) represents the center of the box
relative to the bounds of the cell. The width w (height h)
is normalized with respect to the image width (height). The
confidence c predicts the IoU between the predicted box and
the ground-truth. Moreover, each cell will also predict a score
tuple S = (sac, sbg), where sac and sbg is an actionness score
and a background score for the given cell, respectively.

The loss function is defined as a sum-squared error between
the prediction ot and the ground-truth ôt for the simplicity in
optimization [37]:

λcoord

K2∑
i=0

B∑
j=0

1objij ‖(xi, yi)− (x̂i, ŷi)‖2

+ λcoord

K2∑
i=0

B∑
j=0

1objij ‖(
√
hi,
√
wi)− (

√
ĥi,

√
ŵi)‖2

+

K2∑
i=0

B∑
j=0

1objij (ci − ĉi)2

+ λnoobj

K2∑
i=0

B∑
j=0

1noobjij (ci − ĉi)2

+

K2∑
i=0

1obji

∑
k∈{ac,bg}

(sik − ŝik)2

(1)

where ôit = (x̂i, ŷi, ĥi, ŵi, ĉi, ŝ
i
ac, ŝ

i
bg) denotes the cell i of

the ground-truth ôt. 1
obj
i indicates that the object appears in

cell i, and 1objij indicates that the jth bounding box predictor
in cell i is responsible for the prediction (i.e., has a higher
IoU with the ground truth between the B boxes). In contrast,
1noobjij denotes that the jth bounding box predictor in cell i is
not responsible for the prediction or that there is no ground
truth boxes in cell i.

The first two terms penalize coordinates error only when the
prediction is responsible for the ground truth box. Since the
deviation in the predicted coordinates more better for smaller
boxes than large ones, we take the square root of width and
height. The third and fourth terms penalize confidence score
error, reduced by a factor λnoobj when the prediction is not
responsible for the ground truth box. Since most of the grid
cells do not contain objects, it pushes confidence score towards
zero. The final term penalizes classification as “action” or
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“background” error only when there is an object in the cell.
In this work, we empirically set λcoord = 5 and λnoobj = 0.5.

Recurrent YoTube is doubly deep in spatial-temporal do-
main, which can learn the temporal action dynamics. To
further exploit the RGB and Flow cues in each single frame,
we propose static YoTube which shares the same architecture
as the recurrent YoTube with only one difference, i.e., the static
YoTube replace the last LSTM layer of the recurrent YoTube
with a fully-connected layer with the same number of neurons.
These two networks complement each other and thus combin-
ing their outputs could further improve the performance.

B. Path Linking and Trimming

Once the detectors (Sec. III-A) output a set of bound-
ing boxes for each frame (denoted by B = {{b(j)i , j ∈
[1 . . . Nbi ]}, i ∈ [1 . . . T ]}), we compute the confidence score
sc(b

(j)
i ), actionness score sac(b

(j)
i ) and background score

sbg(b
(j)
i ) for each box b(j)i , where T is the length of the video

and Nbi is the number of predicted boxes in frame i. After
that, we could create a set of proposal paths P = {pi =
{bmi , bmi+1 . . . bni}, i ∈ [1 . . . |P|]}, where mi and ni are the
starting and ending frame of path pi, respectively. The details
are as follows.

1) Action Path Linking: In order to link frame-level boxes
into the coherent path, we firstly define a score for each path
given its confidence scores sc of each box and the IoU of
successive boxes:

S(p) =

T∑
i=1

sc(bi)︸ ︷︷ ︸
unary

+λ0 ×
T∑

i=2

IoU(bi, bi−1)︸ ︷︷ ︸
pairwise

(2)

S(p) will be high for path if the corresponding detection box
is assigned with a high confidence score and overlap. λ0 is a
trade-off factor to balance these two terms.

Maximizing Eqn. 2 helps find paths whose detection box
scores are high and consecutive detection boxes significantly
overlap in spatial and temporal domain.

To solve p̂c = argmax
pc

S(pc), we employ the Viterbi

algorithm [52]. Once the optimal path is calculated, we remove
the bounding boxes in previous path from the frames to
construct the next path until a certain frame does not contain
any boxes.

2) Action Paths Trimming: The generated action paths
described in the last subsection span the entire video since
it greedily optimizes all confidence scores across the paths.
On the other hand, human actions typically take up a fraction
for untrimmed video. Therefore, It is necessary to perform
trimming for removing those boxes that are unlikely belong
to the action regions. Mathematically, each box bt in a path p is
assigned by a binary label yt ∈ {0, 1} (where “zero” and “one”
represent the “background” and “action” class respectively).
With such a scheme, the boxes are near to (or far from) the
valid action regions which should be assigned to the “action”
(or “background”) class as much as possible in the final path
labeling Ŷp = [ŷ0, ŷ1, ..., ŷT ].

Fig. 4. Illustration of the proposed peak trimming method on one UCF-
101 videos: Blue and green curves represent the background and actionness
scores, respectively. Blue and green crosses denote score peaks. Green patches
represent the ground-truth paths and red patches represent paths that are
extracted by using the proposed peak trimming method. It can be observed
that the proposed method is capable of trimming the predicted paths accurately
thanks to certain action and background score transition patterns.

We also noticed that a transition in background scores
typically reflects a change between action and non-action
frames. In addition, the boxes within a valid action region
often have high actioness scores. As a result, detecting peaks
in actioness scores is helpful to find a potential action region,
while finding peaks in background score could define the start
and end of the action regions.

As illustrated in Fig.4, we propose a new method by looking
at the transition pattern in the actionness and background
scores for the path trimming. We first smooth the scores by
adopting averaging approach to reduce the influence of noisy
classifier scores, and then detect all the peaks in both scores.
Note that, a peak is defined as a local maximum among at
least n neighbors:

peaksac ={t, sac(bt) = max(V (ac)
n (t))}

peaksbg ={t, sbg(bt) = max(V (bg)
n (t))}

(3)

where V (k)
n (t) = {sk(bi), i ∈ [t− n . . . t+ n]}, k ∈ {ac, bg}.

Once the peaks have been found, we can select all subse-
quences to generate the final action proposals by applying the
following Algorithm 1.

Algorithm 1 Action paths trimming using actioness and
background score peaks.

Input: actioness score peaks peaksac and background score
peaks peaksbg .
Output: set subseq as a set of trimmed paths.

subseq = ∅
for p ∈ peaksac do

s = max(peaksbg < p)
e = min(peaksbg > p)
add path {bs . . . be} into subseq

end for
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IV. IMPLEMENTATION AND BENCHMARKING

In this section, we discuss the details of implementation and
benchmarking, including the dataset and evaluation metrics.

A. Training

The used CNN architecture for feature extraction in YoTube
is similar to that used in [37]. In details, it consists of 24
convolution layers and 2 fully-connected layers. We firstly
replace the last two fully connected layers with a locally
connected layer consisting of 256 filters with a 3× 3 kernel.
On the top of the locally connected layer, we train an LSTM
layer with 588 neurons to directly regress the coordinates of
the bounding boxes. We employ a locally connected layer to
stabilize the training process and improve the convergence.
The number of neurons in the last layer means dividing the
image into 7 × 7 grids of which each predicts 2 bounding
boxes.

For the RGB stream, the convolutional part of our model
is pretrained on the ImageNet 1000-class dataset [66]. For
the Flow stream, the convolutional part is pretrained with the
weights of the RGB stream. The top layers are initialized using
the method in [67]. We found no problem in convergence by
initializing the weights of our Flow model with the weights
of the RGB model despite of the notable difference between
the images distribution.

We perform data augmentation to prevent over-fitting. This
part is non-negligible due to important correlation among
frames of the same video. Besides mirroring, we use corner
cropping and center cropping. In details, we take a 224× 224
crop from the 320× 240 frame in each corner and the center.
Then we resize this crop to the input size of 448× 448. Such
an operation permits increasing the size of the dataset by a
factor of 12.

We use the Adam [68] optimizer for training. When training
the static YoTube detector, we use a batch size of 32 frames
from different videos during 100 epochs with an initial learn-
ing rate of 10−4. After 20 epochs, the learning rate decay
by 10−5. When training the recurrent YoTube, we freeze the
weighs of the convolutional layers to avoid a catastrophic
forgetting. We set the batch size to 10 sequences and each
sequence consists of 10 frames from different videos during
50 epochs. The same learning rate scheduling is used.

B. Datasets

UCF-101. The UCF-101 dataset is a large action recognition
dataset which contains 101 action categories with more than
13,000 videos and each video contains about 180 frames. In
our experiments, we use a subset which consists of 3,204
videos over 24 categories for the localization task. About 25%
videos have been untrimmed, which permits to validate the
efficiency of our methods of trimming videos. Each video
contains one or more instances of the same action class. It
has large variations in terms of appearance, scale, motion,
etc with much diversity in terms of actions. Three default
training/testing splits are provided with the dataset, and we
perform experiments on the first split which consists of 2,290
training videos and 914 testing videos.

UCF-Sports. The dataset contains 150 sport broadcast
videos with realistic actions captured under dynamic and
cluttered environments. The dataset considers many actions
with large displacement and intra-class variation. These videos
have been trimmed to contain a single action instance without
interruption. There are ten categories in the dataset, e.g.
“diving”, “swinging bench”, “horse riding”, etc. We used the
training-testing split suggested in [50], where the training and
testing partition consist of 103 and 47 videos, respectively.
The ground truth is provided as the sequences of bounding
boxes enclose the actions.

JHMDB. This dataset consists of 928 videos for 21 different
actions such as brush hair, swing baseball or jump. Video clips
are trimmed to the duration of the action. Each clip contains
between 15 and 40 frames. There are 3 training/testing splits
and evaluation averages the results over the three splits.

C. Evaluation metrics

ABO, MABO: We use two popular metrics as in [50] to
report the overall performance, namely Average Best Overlap
(ABO) and Mean ABO (MABO). The overlap (OV) between
a path d = {ds . . . de} and a ground truth path g = {gs . . . ge}
is defined as follows:

OV (d,g) =
1

|d
⋃

g|
×

∑
i∈d

⋂
g

di
⋂
gi

di
⋃
gi

|d
⋃

g| = max(de, ge)−min(ds, gs)

d
⋂

g = [max(ds, gs) . . .min(de, ge)]

where ds and de are the detected bounding boxes in the starting
and ending frame of a path, gs and ge are the bounding boxes
in the starting and ending frame of the ground-truth path.

ABO measures the best localization from the set of action
proposals D = {dj |j = 1...m} for the ground-truth G, where
ABO(c) is the ABO computed for the ground-truth Gc of class
c. The mean ABO (MABO) measures the average performance
across all classes.

ABO =
1

|G|
∑
g∈G

max
d∈D

OV (d,g)

ABO(c) =
1

|Gc|
∑
g∈Gc

max
d∈D

OV (d,g)

MABO =
1

|C|
∑
c∈C

ABO(c)

where C is the set of action classes, G is the set of ground
truth paths and Gc is the set of ground truth paths for action
class c.

Recall vs. IoU: Another popular metric is the Recall
vs. IoU [34], which measures the fraction of ground-truths
detected in a set of overlap threshold. An instance of action,
gi is correctly detected by an action proposal dj if the overlap
score is higher than the threshold η i.e., OV (dj , gi) ≥ η and
η ∈ [0, 1]. In our work, we aim to maximize the recall at the
threshold of 0.5 like [50], [54].

Precision vs Recall: The precision-recall is a metric com-
monly used for action detection. In experiments, we also
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evaluate the precision-recall curve for action proposal to reflect
a detector’s tradeoff between precision and recall. The recall is
similarly defined as in Recall vs IoU. The Precision describes
how many detected actions are matched with respect to the
total number of detected tubes.

V. EXPERIMENTAL RESULTS

Our experiments could be divided into following parts:
component analysis, generalization analysis, parameter sen-
sitivity analysis, run-time analysis and comparison with other
methods.

A. Component Analysis

1) RGB vs. Flow vs. Frame Difference: In recent action
analysis studies, RGB and Flow have shown their complemen-
tary role in achieving state-of-the-art performance [17]. Their
success could attribute to that RGB conveys rich object infor-
mation and scene context and the Flow images capture salient
object motions. Furthermore, in surveillance, frame difference
has also been used as a kind of inputs to speed-up analysis
thanks to its computation efficiency. Fig. 5 demonstrates the
performance of our method with different inputs. One can see
that on UCF-101 and JHMDB, our method using flow image
achieves better performance than the case of RGB inputs.
One underlying reason is that Flow image could eliminate the
influence of the background clutter in RGB. Moreover, we
found in UCF-Sports, using RGB images achieves a better
result than using Flow images, which is resulted from the
contents of dataset. In words, UCF-Sports contains many
videos with salient actors, hence the information from RGB
images is discriminative enough.

The performance of using Frame difference is relatively
lower than that of using RGB and Flow, a possible explanation
is that both UCF-Sports and UCF-101 contain background
clutters/motion, simply calculating the difference between
frames will result in noisy responses from background.

2) AlexNet vs GoogleNet vs C3D: Our method is compat-
ible with recent popular Convolutional Neural Networks such
as AlexNet [69], VGG [70], GoogleNet [71] and C3D [16]
for feature extraction. In LRCN [29], the authors apply
CaffeNet (a variant of AlexNet) for feature extraction. In
our experiment, we choose GoogleNet [71] as our base
feature extractor to balance speed and accuracy since it gives
comparable performance with VGG [70], while using a smaller
number of parameters. On the counter-part, the C3D structure
[16] has shown good performance in action recognition and
temporal action detection by learning 3D convolutional filter.
Hence, we conduct experiments using AlexNet, GoogleNet
and C3D for feature extraction.

The comparison result is shown in Fig.6. The performance
of GoogleNet is about 3% and 6% higher than C3D and
AlexNet respectively. There are two possible reasons for the
performance gain: 1) the GoogleNet is deeper than the C3D
and AlexNet, which can help extract more discriminative
features; 2) our GoogleNet is trained with an input image of
size 448×448, while the input to C3D and AlexNet is only
160×160 and 224×224 respectively. The low-resolution input

UCF101 ABO MABO Recall #Prop.
RGB Stream
Static (RGB) 44.94 45.42 46.13 10
Recurrent (RGB) 45.85 45.83 47.05 21
YoTube (RGB) 47.60 47.78 50.61 35
Flow Stream
Static (FLOW) 46.87 47.02 47.63 33
Recurrent (FLOW) 46.09 46.45 46.3 9
YoTube (FLOW) 48.61 48.83 51.29 42
Ensemble
YoTube-RGB+FLOW (NO TRIM) 45.36 46.42 52.03 80
YoTube-RGB+FLOW (Trim with [25]) 47.02 46.89 54.30 75
YoTube-RGB+FLOW 52.45 52.92 59.19 73

TABLE I
COMPONENT ANALYSIS ON THE UCF-101 DATASET.

UCF-Sports ABO MABO Recall #Prop.
RGB Stream
Static (RGB) 71.64 72.54 97.87 20
Recurrent (RGB) 70.08 71.5 93.62 20
YoTube (RGB) 72.45 73.54 97.87 30
Flow Stream
Static (FLOW) 68.08 68.98 93.62 20
Recurrent (FLOW) 66.22 66.91 91.49 20
YoTube (FLOW) 69.08 69.95 95.74 30
Ensemble
YoTube-RGB+FLOW (NO TRIM) 74.44 75.31 97.87 30
YoTube-RGB+FLOW (Trim with [25]) 74.44 75.31 97.87 30
YoTube-RGB+FLOW 74.44 75.31 97.87 30

TABLE II
COMPONENT ANALYSIS ON THE UCF-SPORTS DATASET.

to C3D and AlexNet is less desirable for detection related
tasks. Actually, we would point out that our architecture could
further enjoy the progress of deep neural networks.

3) Recurrent YoTube vs Static YoTube: The component
analysis between recurrent and static YoTube for two streams
in UCF-101, UCF-Sports and JHMDB are shown in Fig. 7,
Table I, II and III. In UCF-101, the performance of recurrent
version is slightly better than the static version in RGB stream
with around 1% improvements in recall and the ensemble
model (YoTube(RGB)) achieves about 3.56% improvement
as shown in Table I. These results prove that the recurrent
model and static model are complementary. We conjecture this
since the RNN could capture the temporal dynamics among
adjacent frames. For the results of Flow stream in Table I,
the recall of static version is 1.3% better than the recurrent

JHMDB ABO MABO Recall #Prop.
RGB Stream
Static (RGB) 68.36 67.55 92.34 20
Recurrent (RGB) 56.43 56.07 91.07 20
YoTube (RGB) 70.52 69.72 94.03 30
Flow Stream
Static (FLOW) 70.46 70.08 96.81 20
Recurrent (FLOW) 71.76 71.36 96.17 20
YoTube (FLOW) 72.55 72.17 97.65 30
Ensemble
YoTube-RGB+FLOW (NO TRIM) 74.72 74.21 99.31 30
YoTube-RGB+FLOW (Trim with [25]) 73.41 72.65 97.08 35
YoTube-RGB+FLOW 74.72 74.21 99.31 30

TABLE III
COMPONENT ANALYSIS ON THE JHMDB DATASET.
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Fig. 5. Comparison on using RGB, Flow, Frame Difference and their combinations as input. From left to right column, the results are on the UCF-101,
UCF-Sports, and the JHMDB dataset.
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Fig. 6. Comparison by using AlexNet, GoogleNet and C3D for feature
extraction.

version and the ensemble model (YoTube(FLOW)) achieves
another 4% improvement than the static version. The result
further confirms the complementariness of two methods. The
slightly inferior result of recurrent version is probably caused
by lacking training data. In addition, the ensemble flow stream
(YoTube(FLOW)) performs slightly better than the ensemble
rgb stream (YoTube(RGB)). This is probably because the
flow field eliminates the interference from the background.
The proposed model (YoTube (RGB+FLOW)) combines two
streams, which achieves 8% improvement than the flow stream
in recall. The result demonstrates that the RGB and Flow
streams also complement each other.

For UCF-Sports dataset, the static version outperforms the
recurrent version by 4% (see Table II), whereas the ensemble
model performs similar to the static version in terms of recall,
but achieves higher ABO and MABO for better localization.
For the flow stream, the static version gives a performance
gain of 2.2% over the recurrent version in terms of recall, and
the ensemble model is 2% better than the static version.

For JHMDB dataset, the static version is 12%, 11% and
1.3% better than the recurrent version in RGB stream in terms
of the ABO, MABO and Recall metrics. The combination of

static and recurrent version yields a further 2% performance
improvement. In Flow stream, the recurrent version is about
1.3% better than the static version in terms of ABO and
MABO, their combination yields around 1.5% improvement.
Further ensemble yields a recall of 99.31%. This confirms
the complementariness of recurrent and static networks using
RGB and Flow information.

4) Comparison between different path trimming meth-
ods: We also compare our path trimming method with the
method proposed in our conference work [25], one can observe
that the new method is 5% and 2% better than [25] on UCF-
101 and JHMDB with less amount of tubes in (see Tables
I–III). Our method and [25] have the identical result in UCF-
Sports in Table II, because the classifier scores in UCF-Sports
is strong enough to indicate the start and end of the video.

Moreover, we investigate the performance of the model
without path trimming (NO TRIM) in Table I, II and III. As
UCF-101 dataset contains un-trimmed video, the performance
of our method without path trimming is nearly 7% lower in
recall and also contains more noisy paths. This shows that the
proposed path trimming is effective for the untrimmed video.
For the UCF-Sports and JHMDB dataset which consists of
trimmed videos, the method with and without path trimming
achieve the same result. This proves that our method is
adaptive to the video content.

5) Run Time Analysis Finally, we compared the running
speed of our method with the APT [50] and Gkioxari [52].
Our method runs at 20 FPS, which is 15x faster than APT
and 60x faster than Gkioxari. Our path linking and trimming
method runs at 0.01s and is 20x faster than [25], which is
quite computational efficient.

B. Generalization Analysis

We test the generalization ability of our method by pre-
training the models on UCF-101 and transferring on JH-
MDB. Note that, there are little overlap between these two
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Fig. 7. Comparison between two stream’s static YoTube and recurrent YoTube on the UCF-101 (top-row) , UCF-Sports (middle row) and JHMDB (bottom
row); left column shows RGB stream, middle column shows the Flow stream and right column shows their ensemble.
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datasets. The corresponding result is shown in Fig.8. One
can observe that our model and [52] pre-trained on UCF-
101 experience nearly 15% performance degradation when the
JHMDB dataset is used for evaluation. Further analysis reveals
that the loss mainly results from the flow stream. One possible
reason is that the appearance of flow images in UCF-101 is
corrupted by noises, which is difficult to generalize to JHMDB
as it consists of small motions.

C. Prameter Sensitivity Test

The hyper-parameters λobj and λnoobj in Eqn.1 balance the
role of objects and no-objects, whose values are empirically
chosen. In experiment, we investigate the influence of one

Fig. 9. Parameter sensitivity test: the magnitude of the contour map is the
recall rate in UCF-101, the x-axis is the test value of λobj and y-axis is the
test range of λnoobj .

of parameters by fixing the other parameters. The sensitivity
testing result is shown in Fig.8. One can observe that our
method has a relative stable performance when λcoord ∈ {5, 9}
and λnoobj ∈ {0.1, 0.5}. One explanation for such parameter
selection is that as one image typically contains a few action
regions, hence the bounding boxes from background should
be with small weights.

D. Comparison to state-of-the-arts

We compare our method with state of the arts on UCF-
101, UCF-Sports and JHMDB datasets. The recall-vs-IoU and
recall-per-class curves for the testing datasets are shown in
Fig. 10 and Fig. 11, respectively.
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Fig. 10. Comparison with some state of the arts on UCF-101, UCF-Sports and JHMDB dataset in terms of recall with different IoU thresholds.
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Fig. 11. Comparison with some state-of-the-art methods on UCF-101, UCF-Sports and JHMDB dataset. The performance is measured by the recall on each
action class.

Fig. 12. Comparison with some state-of-the-arts methods on UCF-101, UCF-Sports and JHMDB dataset. The performance is measured by the precision vs.
recall.

For the UCF-101 dataset, our method outperforms the state
of the art [54] by at least 20% in all the range of IoU. Although
Li et al. proposed using RPN [35], their model only involves
one stream and the achieved performance is only 4% better
than the unsupervised method (APT [50]) in terms of the recall
as shown in Table IV. Notwithstanding, the recall of our
single stream based method in RGB and Flow remarkably
outperforms [54] by 11% and 12%, respectively. The result
shows the superiority of the proposed YoTube which employs
spatial-temporal modeling and two-stream design. [51] is a
low-level features based human detector and the experimental
result shows that it cannot effectively handle large dynamic
changes in the scene. The work in [49] is also a low-level
features based method, which is designed for non-overlap
segmentation. These two characteristics make it sub-optimal
for the task and achieving the lowest recall. According to the
per-class recall curve in Fig. 11, our method is better than Li et
al. [54] in many cases, especially when the data set contains
large motion changes (e.g. “skijet”, “floor gymnastics” and

“long jump” ).

For the UCF-Sports dataset, our method also outperforms
Li et al. [54] by nearly 6% in terms of recall in Table V.
Moreover, the deep learning based approaches (our method
and [54]) also remarkably outperform the unsupervised meth-
ods, which shows the effectiveness of the deep networks based
methods. The per-class recall curve for all methods is also
provided in Fig. 11.

For the JHMDB dataset, Table VI shows that our method
outperforms [52] and [50] by nearly 13% and 40% in terms
of recall. For a comprehensive evaluation, we also report
the Recall vs. Precision Curve in Fig.12. The unsupervised
method [50] achieves a relative low precision because they
generate many tubes by using low-level cues. Our method
performs better than Gkioxari and Malik [52] since we si-
multaneously consider the appearance and temporal contexts.
Actually, Precision and Recall may not be a good metric to
evaluate action proposal, as proposals aims to have as high
coverage as possible to cover all the objects, hence the recall
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UCF101 ABO MABO Recall #Prop.
Brox & Malik [49] 13.28 12.82 1.40 3

Yu et al. [51] n.a n.a 0.0 10,000
APT [50] 40.77 39.97 35.45 2299

Li et al. [54] 63.76 40.84 39.64 18
YoTube-RGB 47.60 47.78 50.61 35

YoTube-FLOW 48.61 48.83 51.29 42
YoTube-RGB+FLOW 52.45 52.92 59.19 73

TABLE IV
QUANTITATIVE COMPARISON ON THE UCF-101 DATASET. RECALL IS

COMPUTED AT AN IOU THRESHOLD OF 0.5.

UCF Sports ABO MABO Recall #Prop.
Brox & Malik [49] 29.84 30.90 17.02 4

Jain et al. [47] 63.41 62.71 78.72 1642
Oneata et al. [48] 56.49 55.58 68.09 3000

Gkioxari et al. [52] 63.07 62.09 87.23 100
APT [50] 65.73 64.21 89.36 1449

Li et al. [54] 89.64 74.19 91.49 12
YoTube-RGB 72.45 73.54 97.87 30

YoTube-FLOW 69.08 69.95 95.74 30
YoTube-RGB+FLOW 74.44 75.31 97.87 30

TABLE V
QUANTITATIVE COMPARISON ON THE UCF-SPORTS DATASET. RECALL IS

COMPUTED AT AN IOU THRESHOLD OF 0.5.

is more important than precision to reflect the action proposal’s
performance. Moreover, action proposal is still relatively new
problem and lacking sufficient methods to benchmark.

We also evaluate our methods in terms of other metrics,
i.e., ABO, MABO, and number of proposals. The results are
shown in Table IV, V and VI. From the results, our method
produces the highest MABO. Note that, although [54] achieves
the highest ABO, there are big differences between ABO and
MABO. Actually, these two measurements should be in the
similar scale according to the formula in Sec. IV-C, i.e. MABO
is the mean of ABO for all classes.

Some visual examples are shown in Fig.13 and 14. The il-
lustrations demonstrate that our method can produce candidate
paths which produce good localization of the human actions.

E. Discussion

The proposed method has some failed cases as follows.
First, it may loss frame-level localization for medium- and
small-scale objects, especially in cluttered environments and
the video with severe motion blurs (e.g. row 1 and 2 of
Fig. 15). One possible reason is that our method performs
inference on a dense fully connected layer which cannot
capture the small scale changes due to its relatively coarse
receptive field.

JHMDB ABO MABO Recall #Prop.
Gkioxari et al. [52] 63.07 62.09 86.34 125

APT [50] 54.16 53.37 59.55 2400
YoTube-RGB 70.52 69.72 94.03 30

YoTube-FLOW 72.55 72.17 97.65 30
YoTube-RGB+FLOW 74.72 74.21 99.31 30

TABLE VI
QUANTITATIVE COMPARISON ON THE JHMDB DATASET. RECALL IS

COMPUTED AT AN IOU THRESHOLD OF 0.5.

Another failed case is that the localization of the generated
action proposal might be interfered when the detection quality
is unsatisfactory or objects have large overlap (see Fig. 15,
row 2). The reason is that the path is generated by the greedy
dynamic programming which accumulates errors during opti-
mization. How to improve the robustness against these failed
cases will be explored in our future work.

VI. CONCLUSION

We propose a novel framework for video action proposal.
Given an untrimmed video as input, our method produces a
small number of spatially compact and temporally smooth
action proposals. The proposed approach enjoys the regres-
sion capability of RNN and representation learning capability
of CNN, thus producing frame-level candidate action boxes
jointly using RGB, Flow and temporal contexts among frames.
The action proposals are constructed using dynamic pro-
gramming with a novel path trimming method. Incorporating
the long-term temporal context from LSTM helps reduce
the ambiguities in each single frame. The proposed path
trimming method can help trim the path for untrimmed videos.
The superior results on UCF-101, UCF-Sports and JHMDB
datasets highlight the effectiveness of our framework.

Moreover, we recently extend our method to fully convo-
lutional approach [72] and achieved much improved perfor-
mance. In the future, we plan to investigate how to use network
compression technique to prune the redundant parameters so
that the method could run an on-board device such as drone.
In addition, we will also explore how to use a deeper network
such as ResNet [73] for higher accuracy.
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